

JIM GARZON

PENN STATE. AE CONSTRUCTION MANAGEMENT

APARTMENT COMPLEX ANYTOWN, USA

PROJECT BACKGROUND

<u>Type of building:</u> Mixed-use residential building (Retail, and residential)

Size (total square feet): 423,469 SF

Number of stories above grade: Five Floors above ground

Dates of construction (start – finish): August 21, 2006 – April 11, 2008

<u>Actual cost information:</u> Contract Amount: \$ 50,047,750 General Conditions: \$ 2,972,441 4.5% Fee

<u>Project delivery method:</u> Design-Bid-Built

SCHEDULE

ID	0	Task Name	Duration	Start	Finish	April 1 September 2 Ma /27 5/22 8/14 11/6 1/29		September 1 /16 10/8 12	February 2 /31 3/25 (11 February 1 12/2 2/24 5/	18
1		Design/Preconstruction	166 days	Mon 6/6/05	Mon 1/23/06						derer der der der der der der der der de	1
2	1	Purchase Subs	23 days	Mon 1/16/06	Wed 2/15/06							
3		Permitting	117 days	Wed 11/9/05	Thu 4/20/06		5					
4		NTP	0 days	Mon 4/24/06	Mon 4/24/06		Q-4/24					
5		Sitework and Mobilization	48 days	Mon 4/24/06	Wed 6/28/06							
6		Excavation	49 days	Fri 6/30/06	Wed 9/6/06			.				
7		Foundations	57 days	Thu 8/3/06	Fri 10/20/06		-					
8		Superstructure	140 days	Mon 10/23/06	Fri 5/4/07				-			
9		Interior Framing	71 days	Thu 2/8/07	Thu 5/17/07							
10		Concrete	136 days	Wed 8/2/06	Wed 2/7/07			1				
11	H.	Roof	12 days	Tue 5/22/07	Wed 6/6/07							
12	111	Exterior Enclosure	168 days	Thu 2/22/07	Mon 10/15/07							
13		Mechanical Rough in	10 days	Fri 9/21/07	Thu 10/4/07					0		
14	1	Electrical Rough in	10 days	Fri 10/26/07	Thu 11/8/07							
15		Plumbing Rough in	5 days	Fri 10/26/07	Thu 11/1/07					0		
16		First Floor Complete	0 days	Wed 11/28/07	Wed 11/28/07						11/28	
17		Second Floor Complete	0 days	Fri 12/7/07	Fri 12/7/07						12/7	
18		Interior Finishes	131 days	Fri 9/14/07	Fri 3/14/08							
19		Third Floor Complete	0 days	Thu 1/3/08	Thu 1/3/08							
20	11	Fourth Floor Complete	0 days	Wed 2/20/08	Wed 2/20/08							
21	111	Fifth Floor Complete	0 days	Fri 3/14/08	Fri 3/14/08							
22	111	Final Cleaning	15 days	Mon 3/17/08	Fri 4/4/08						e _	
23		Final Inspection	5 days	Mon 4/7/08	Fri 4/11/08						7	
24	111	Substantial Completion	0 days	Fri 4/11/08	Fri 4/11/08							
										and an and a		-

BUILDING SYSTEM SUMMARY

Structural System
Mechanical System

PROJECT COST EVALUATION

<u>Actual Project Cost</u> Total Cost: \$42,584,209 Square Foot Cost: \$100.56/SF <u>Total Project Cost</u> Total Cost: \$50,047,750 Square Foot Cost: \$118.19/SF

	Total Cost of System	Square Foot Cost	% of Total Project Cost
Structural System	\$11,661,204	\$27.54	27.38%
Mechanical System	\$4,304,705	\$10.17	10.11%
Electrical System	\$3,470,420	\$8.20	8.15%
Roofing System	\$1,709,289	\$4.04	4.01%
Fire Protection	\$1,491,035	\$3.52	3.50%
Masonry	\$2,367,829	\$5.59	5.56%

MY FOUR ANALYSES

Prefabrication of the Exterior wall

- Reduction of the HVAC system
- Redesign of the interior structure
- Research: The language barrier problem

ANALYSIS 1:

PREFABRICATION OF THE EXTERIOR WALL

PROBLEM BACKGROUND

Problem

Hand laid brick is the most common method when building the façade of a building. However, this method is slow and takes a lot of time of the schedule.

<u>Goal</u>

The goal of this analysis is to see if replacing the bricks with precast brick panels could reduce the schedule duration and cost of the project.

RESEARCH METHOD STEPS

Perform a Quantity Take-Off of the Existing Façade
Select an Architectural Precast Brick Panel system to replace the current system.

•Perform a Cost & Schedule Comparison of both Systems

CURRENT SYSTEM

Category	CSI	Туре	Quantity	Unit	Material	Labor	Tot. Unit Price	Total Cost
	5350	EIFS	14,000	SF	5.7	14.40	20.1	\$281,400
Masonry	1400	Brick	47,000	SF	15.05	18.35	33.40	\$1,569,800
	2750	CMU	3,000	SF	3.05	5.9	8.95	\$26,850
Doors	5100	Overhead door	32	EA	1752	703	\$2,455	\$78,560
	1980	Storefronts	32	EA	743	351	\$1,694	\$54,208
	5850	Type 1	250	EA	1400	294	1694	\$423,500
Windows	5500	Type 2	115	EA	975	243	1218	\$140,070
	5250				535	120	655	\$49,125
							Total	\$2,632,513

PROPOSED SYSTEM

NDER**WALL**®

Architectural Precast Concrete/Steel Stud Building Panels

Heavy-guage galvanized or stainless steel stud accommodates interior finish

Hot-dipped galvanized reinforcing

High-strength architectural precast concrete, 2 inch thick with high-end fiber for extra strength

1/2 inch air space reduces * thermal transfer

Available in a variety of colors, textures and finish combinations

PROPOSED SYSTEM

COST COMPARISON

Item	SF	Cost/SF	Total Cost
Slenderwall Panels	64,000	\$36	\$2,304,000

Item	Cost
Slenderwall Panels	2,304,000
Crane Usage	29,904
General Condition savings	-184,241
Cost of Previous system	-1,878,050
Additional cost of new System	\$271,613

SCHEDULE COMPARISON

Item	Quantity	Total Days
Brick/EIFS/CMU	64,000 SF	166 days
SlenderWall Panels	324 Panels	21 days

SCHEDULE

ID	0	Task Name	Duration	Start	Finish	April 1 September 2 Ma /27 5/22 8/14 11/6 1/29		September 1 /16 10/8 12	February 2 /31 3/25 (11 February 1 12/2 2/24 5/	18
1		Design/Preconstruction	166 days	Mon 6/6/05	Mon 1/23/06						derer der der der der der der der der de	1
2	1	Purchase Subs	23 days	Mon 1/16/06	Wed 2/15/06							
3		Permitting	117 days	Wed 11/9/05	Thu 4/20/06		5					
4		NTP	0 days	Mon 4/24/06	Mon 4/24/06		Q-4/24					
5		Sitework and Mobilization	48 days	Mon 4/24/06	Wed 6/28/06							
6		Excavation	49 days	Fri 6/30/06	Wed 9/6/06			.				
7		Foundations	57 days	Thu 8/3/06	Fri 10/20/06							
8		Superstructure	140 days	Mon 10/23/06	Fri 5/4/07				-			
9		Interior Framing	71 days	Thu 2/8/07	Thu 5/17/07							
10		Concrete	136 days	Wed 8/2/06	Wed 2/7/07			1				
11	H.	Roof	12 days	Tue 5/22/07	Wed 6/6/07							
12	111	Exterior Enclosure	168 days	Thu 2/22/07	Mon 10/15/07							
13		Mechanical Rough in	10 days	Fri 9/21/07	Thu 10/4/07					0		
14	1	Electrical Rough in	10 days	Fri 10/26/07	Thu 11/8/07							
15		Plumbing Rough in	5 days	Fri 10/26/07	Thu 11/1/07					0		
16		First Floor Complete	0 days	Wed 11/28/07	Wed 11/28/07						11/28	
17		Second Floor Complete	0 days	Fri 12/7/07	Fri 12/7/07						12/7	
18		Interior Finishes	131 days	Fri 9/14/07	Fri 3/14/08							
19		Third Floor Complete	0 days	Thu 1/3/08	Thu 1/3/08							
20	11	Fourth Floor Complete	0 days	Wed 2/20/08	Wed 2/20/08							
21	111	Fifth Floor Complete	0 days	Fri 3/14/08	Fri 3/14/08							
22	111	Final Cleaning	15 days	Mon 3/17/08	Fri 4/4/08						e _	
23		Final Inspection	5 days	Mon 4/7/08	Fri 4/11/08						7	
24	111	Substantial Completion	0 days	Fri 4/11/08	Fri 4/11/08							
										andan mada		-

SITE PLANNING IMPLICATIONS

ADVANTAGES VS DISADVANTAGES OF PROPOSED SYSTEM

Disadvantages:

•Increases Cost.

•Additional Planning and Coordination.

Advantages:

•Reduces Schedule Duration.•Better Performance.

ANALYSIS 2: REDUCTION OF THE HVAC SYSTEM

PROPOSED IDEAS •Centralized system •Elimination of some units •Downsizing the current units

TYPES OF WALLS

R AND U VALUE CALCULATIONS

		1	
Current System	Thickness	R-Value/inch	Total R-Value
Layer	(in)		(hr-SF-F/BTU)
Outside Air Film	8	0.17	0.17
Brick	4	.8/thickness	0.8
Drywall	2	0.9	1.8
Air Space	0.5	1	0.5
Fiberglass	4	3.2	12.8
			16.07
SlenderWall System	Thickness	R-Value/inch	Total R-Value
Layer	(in)		(hr-SF-F/BTU)
Outside Air Film	∞	0.17	0.17
Precast Concrete face	2	0.8	1.6
Air Space	0.5	1	0.5
Fiberglass Batt insulation	6	3.14	18.84
			21.1

System	R-Value	U-Value
Unit	hr-SF-F/BTU	BTU/hr-SF-F
Current Brick system	16.07	.0622
SlenderWall System	21.1	.0474

MECHANICAL SYSTEM CALCULATIONS

	Area (SF)
Perimeter Wall	65,000

Winter Temperature In Washington DC				
То	15°F			
Ti	70°F			
Change in Temperature	55°F			

Summer Temperature In Washington DC				
То	95°F			
Ti	70°F			
Change in Temperature	25°F			

MECHANICAL SYSTEM CALCULATIONS

Heat Loss During Winter					
System	U-Value Area Δ T		Heat Loss		
	(BTU/hr-sf-F)	(SF)	(F)	(BTU/hr)	
Current Brick Façade	.0622	65,000	55°F	222,365	
SlenderWall System	.0474	65,000	55°F	169,455	
			Difference	52,910	

Heat Gain During Summer				
System	U-Value Area Δ T		Heat Loss	
	(BTU/hr-sf-F)	(SF)	(F)	(BTU/hr)
Current Brick Façade	.0622	65,000	25°F	101,075
SlenderWall System	.0474	65,000	25°F	77,025
			Difference	24,050

HVAC SYSTEM INFORMATION

WY13B33A

Cooling Capacity: 12,500/12,100 BTU/h Heating Capacity: 10,400/10,000 BTU/h EER: 9.0/9.0 Moisture Removal: 3.2 Pints/Hr. Room Side Air Circulation: 280 CFM Volts Rated: 230/208 Cooling Amps: 6.4/6.8 Cooling Watts: 1,389/1,352 Heating Amps: 5.4/5.7 Heating Watts: 1,182/1,136

MECHANICAL SYSTEM IMPACTS

Centralized system
Elimination of some units
Downsizing the current units

MECHANICAL SYSTEM IMPACTS

Each apartment would need 294 BTU/Hr less in the winter and 134 BTU/Hr less in the summer

Model	Cooling BTU/h	Heating BTU/h	Volts	Amps**	EER	Height in.	Width in,	Depth in.	Circuit Breaker	Weight Ibs.
WS08810A	8000		115	6.8	10.5	16-3/4	27	16-3/4	125V-15A	93
WS10B10A	10000		115	8.7	10.5	16-3/4	27	16-3/4	125V-15A	103
WS14810A	13500		115	12.0	9.5	16-3/4	27	16-3/4	125V-15A	112
W\$10B30A	10000	1. 1	230/208	4.6/5.0	10.0	16-3/4	27	16-3/4	250V-15A	101
W\$13B30B	12500		230/208	6.3/6.7	8.9	16-3/4	27	16-3/4	250V-15A	109
W\$16B30A	15800		230/208	7.8/8.5	9.0	16-3/4	27	16-3/4	250V-15A	119
WE10B33A	10000	11000	230/208	16.0/14.7	10.0	16-3/4	27	16-3/4	250V-20A	103
WE13833B	12500	11000	230/208	15.0/14.7	8.9	16-3/4	27	16-3/4	250V-20A	111
WE16833A	15800	11000	230/208	16.0/14.7	9.0	16-3/4	27	16-3/4	250V-20A	121
WY10B33A	10100	8100*	230/208	3.9/6.0	10.0	16-3/4	27	16-3/4	250V-20A	107
WY13B33A	12500	10400*	230/208	5.4/5.7	9.0	16-3/4	27	16-3/4	250V-20A	116

ADVANTAGES VS DISADVANTAGES OF PROPOSED SYSTEM

Disadvantages:

Increases Cost (increases cost of projects by only 0.6%).Additional Planning and Coordination.

Advantages:

•Reduces Schedule Duration (Project can be completed 3 month earlier).

•Better Performance (the additional insulation saves energy and reduces electricity cost).

ANALYSIS 3:

REDESIGN OF THE INTERIOR STRUCTURE

REDESIGN OF THE INTERIOR STRUCTURE

COST ANALYSIS

•Total Cost of interior wood structure is \$330,905
•Total Cost of new proposed structure is \$411,000
•Increases the overall cost of the building by 0.2%.
•Maintenance cost of wood is much greater.

REDESIGN OF THE INTERIOR STRUCTURE

SCHEDULE ANALYSIS

The erection duration of new system is the sameSchedule remains the same

REDESIGN OF THE INTERIOR STRUCTURE

CONCLUSION

Increases cost (only by 0.2%)
Schedule remains the same
Increases the value of the building

ANALYSIS 4:

RESEARCH: THE LANGUAGE BARRIER PROBLEM

THE LANGUAGE BARRIER PROBLEM

Do you feel that the language barrier is a problem

Do you think that if you spoke Spanish things

Have you had any problems with workers not

Do you plan to learn Spanish

If the company offered Spanish classes would you

Do you think the language barrier could affect the

Do you think the language barrier affects the efficiency and productivity on the jobsite Do you think the industry should pay more

THE LANGUAGE BARRIER PROBLEM

	Yes	No
Would you take Spanish classes if the company offered it?	5	0
Would you spend time studying Spanish at home after work?	1	4

QUESTIONS?

GRAVITY CONNECTION @ CAST-IN-PLACE SLAB

Simple Mils to Gauge Conversion Chart				
Minimum Thickness (mils)	Reference Gauge Number			
33	20			
43	18			
54	16			
68	14			
97	12			
118	10			

Load	Metal Stud
4k	400S162-54
8k	400S162-97
12k	(2) 400S162-54
16k	(2) 400S162-68
20k	(2) 400S162-97
24k	(2) 400S162-97
30k	(3) 400S162-54

Unit 1+DAMPDU

S = 4 ft

Live load = 40psf x (4 ft) = 160plf

Dead load = 4 ft x [(1.6) x (40psf) + (1.2) x (4in / 12) x (150psf)] = 496plf

Then use an Open Web steel joist k-series 12K5 (dead load = 555plf / live load = 198plf)

P = (496plf) x (21ft) = 10.42Kips Use 12.0 Kips

Then, based on the Joist Girder Design Guide use a 32G8N10.4K (32plf)

•Steel is stronger, lighter and more dimensionally stable than wood.

•Steel stud interior walls provide an uncommonly straight and stable wall. This reduces call backs for sheet rock separation, nail pop-outs, molding separation and warping.

•Pre-punched service holes in studs for electrical wiring, plumbing or other utility lines save time and money.

•Steel framed homes are safer in fires – they will not add fuel to a fire nor collapse as easily as wood.

•Stronger: steel framed homes greatly exceed all wind and seismic codes without adding any additional cost.

•Lightning protection: steel gives electricity a pathway to ground resulting in less secondary fires and explosions.

•No mold, mildew or rotting

•Super Insulated – no air infiltration if insulated with foam.

•Avoid termite problems

•Less repairs and maintenance

•No wasted scrap – all extra material can be recycled.